148 research outputs found

    Kinetics and dynamics of atmospheric ions, clusters and aerosols

    Get PDF

    Within-host evolution decreases virulence in an opportunistic bacterial pathogen

    Get PDF
    Publisher Copyright: © 2015 Mikonranta et al.Background: Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. Results: We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. Conclusions: This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.Peer reviewe

    Life history trade-offs and relaxed selection can decrease bacterial virulence in environmental reservoirs

    Get PDF
    Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm) caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the ‘predator absent’ selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.Peer reviewe

    Fit-for-Purpose Information for Offshore Wind Farming Applications—Part-I: Identification of Needs and Solutions

    Get PDF
    The rapid expansion of offshore wind farms (OWFs) in European seas is accompanied by many challenges, including efficient and safe operation and maintenance, environmental protection, and biodiversity conservation. Effective decision-making for industry and environmental agencies relies on timely, multi-disciplinary marine data to assess the current state and predict the future state of the marine system. Due to high connectivity in space (land–estuarial–coastal sea), socioeconomic (multi-sectoral and cross-board), and environmental and ecological processes in sea areas containing OWFs, marine observations should be fit for purpose in relation to multiple OWF applications. This study represents an effort to map the major observation requirements (Part-I), identify observation gaps, and recommend solutions to fill those gaps (Part-II) in order to address multi-dimension challenges for the OWF industry. In Part-I, six targeted areas are selected, including OWF operation and maintenance, protection of submarine cables, wake and lee effects, transport and security, contamination, and ecological impact assessments. For each application area, key information products are identified, and integrated modeling–monitoring solutions for generating the information products are proposed based on current state-of-the-art methods. The observation requirements for these solutions, in terms of variables and spatial and temporal sampling needs, are therefore identified.publishedVersio

    Fit-for-Purpose Information for Offshore Wind Farming Applications—Part-II: Gap Analysis and Recommendations

    Get PDF
    Offshore wind energy installations in coastal areas have grown massively over the last decade. This development comes with a large number of technological, environmental, economic, and scientific challenges, which need to be addressed to make the use of offshore wind energy sustainable. One important component in these optimization activities is suitable information from observations and numerical models. The purpose of this study is to analyze the gaps that exist in the present monitoring systems and their respective integration with models. This paper is the second part of two manuscripts and uses results from the first part about the requirements for different application fields. The present solutions to provide measurements for the required information products are described for several European countries with growing offshore wind operations. The gaps are then identified and discussed in different contexts, like technology evolution, trans-European monitoring and modeling initiatives, legal aspects, and cooperation between industry and science. The monitoring gaps are further quantified in terms of missing observed quantities, spatial coverage, accuracy, and continuity. Strategies to fill the gaps are discussed, and respective recommendations are provided. The study shows that there are significant information deficiencies that need to be addressed to ensure the economical and environmentally friendly growth of the offshore wind farm sector. It was also found that many of these gaps are related to insufficient information about connectivities, e.g., concerning the interactions of wind farms from different countries or the coupling between physical and biological processes.publishedVersio
    • …
    corecore